599 research outputs found

    Processes underlying rabies virus incursions across US–Canada Border as revealed by whole-genome phylogeography

    Get PDF
    Disease control programs aim to constrain and reduce the spread of infection. Human disease interventions such as wildlife vaccination play a major role in determining the limits of a pathogen’s spatial distribution. Over the past few decades, a raccoon-specific variant of rabies virus (RRV) has invaded large areas of eastern North America. Although expansion into Canada has been largely prevented through vaccination along the US border, several outbreaks have occurred in Canada. Applying phylogeographic approaches to 289 RRV whole-genome sequences derived from isolates collected in Canada and adjacent US states, we examined the processes underlying these outbreaks. RRV incursions were attributable predominantly to systematic virus leakage of local strains across areas along the border where vaccination has been conducted but also to single stochastic events such as long-distance translocations. These results demonstrate the utility of phylogeographic analysis of pathogen genomes for understanding transboundary outbreaks

    Application of high-throughput sequencing to whole rabies viral genome characterisation and its use for phylogenetic re-evaluation of a raccoon strain incursion into the province of Ontario

    Get PDF
    Raccoon rabies remains a serious public health problem throughout much of the eastern seaboard of North America due to the urban nature of the reservoir host and the many challenges inherent in multi-jurisdictional efforts to administer co-ordinated and comprehensive wildlife rabies control programmes. Better understanding of the mechanisms of spread of rabies virus can play a significant role in guiding such control efforts. To facilitate a detailed molecular epidemiological study of raccoon rabies virus movements across eastern North America, we developed a methodology to efficiently determine whole genome sequences of hundreds of viral samples. The workflow combines the generation of a limited number of overlapping amplicons covering the complete viral genome and use of high throughput sequencing technology. The value of this approach is demonstrated through a retrospective phylogenetic analysis of an outbreak of raccoon rabies which occurred in the province of Ontario between 1999 and 2005. As demonstrated by the number of single nucleotide polymorphisms detected, whole genome sequence data were far more effective than single gene sequences in discriminating between samples and this facilitated the generation of more robust and informative phylogenies that yielded insights into the spatio-temporal pattern of viral spread. With minor modification this approach could be applied to other rabies virus variants thereby facilitating greatly improved phylogenetic inference and thus better understanding of the spread of this serious zoonotic disease. Such information will inform the most appropriate strategies for rabies control in wildlife reservoirs

    Emergence of Arctic-like Rabies Lineage in India

    Get PDF
    Progenitors of Arctic-like rabies viruses, which now circulate extensively in India, may have been responsible for the emergence of the Arctic rabies lineage

    Caracterización molecular y biológica del virus de la rabia que circula en zorrillos de México enfocado a la variante del gen de la fosfoproteína (P) 

    Get PDF
    The objective of this work was to characterize molecularly rabies viruses from Mexican skunks, by comparison of a portion of the viral P gene sequence with corresponding regions from other skunk-adapted rabies virus variants and with other genotype 1 rabies viruses that circulate in the Americas. Furthermore, incubation period and histopathologic lesions after virus inoculation by the intra-cerebral route in mice was characterized. According to the results of phylogenetic studies the Mexican skunk strains (Antigenic Variant (AV) 8 and AV10) are evolutionarily quite distinct. The AV10 isolate from South Baja California is quite closely related to the viruses that circulate in Californian skunks, while the AV8 isolate from San Luis Potosí was most closely related to the South central skunk strain that circulates in southern states such as Texas. These variations were reflected in some biological properties of both strains in mice.El objetivo de este estudio fue la caracterización molecular y biológica del virus de la rabia en zorrillos de México, comparando una porción de la secuencia viral del gen P, con regiones correspondientes de variantes de virus rábico adaptadas en zorrillos y pertenecientes al genotipo 1 (virus de la rabia "clásica"), que circulan en América. Como parte de la caracterización biológica se incluyó el periodo de incubación y las lesiones histopatológicas después de la inoculación del virus por ví­a intracerebral en ratones. De acuerdo a los resultados de estudios filogenéticos, las cepas de zorrillo mexicano (variante antigénica (AV8 y AV10) son muy distintas en cuanto a su evolución. El aislado AV10 de Baja California Sur está muy relacionado con los virus que circulan en zorrillos de California, mientras que el aislado AV8 de San Luis Potosí­ tuvo mayor relación con la cepa del zorrillo del Centro/Sur que circula en los estados del sur, como Texas. Estas variantes se reflejaron en algunas propiedades biológicas de ambas cepas en ratones

    Towards Enhanced Diagnosis of Diseases using Statistical Analysis of Genomic Copy Number Data

    Get PDF
    Genomic copy number data are a rich source of information about the biological systems they are collected from. They can be used for the diagnoses of various diseases by identifying the locations and extent of aberrations in DNA sequences. However, copy number data are often contaminated with measurement noise which drastically affects the quality and usefulness of the data. The objective of this project is to apply some of the statistical filtering and fault detection techniques to improve the accuracy of diagnosis of diseases by enhancing the accuracy of determining the locations of such aberrations. Some of these techniques include multiscale wavelet-based filtering and hypothesis testing based fault detection. The filtering techniques include Mean Filtering (MF), Exponentially Weighted Moving Average (EWMA), Standard Multiscale Filtering (SMF) and Boundary Corrected Translation Invariant filtering (BCTI). The fault detection techniques include the Shewhart chart, EWMA and Generalized Likelihood Ratio (GLR). The performance of these techniques is illustrated using Monte Carlo simulations and through their application on real copy number data. Based on the Monte Carlo simulations, the non-linear filtering techniques performed better than the linear techniques, with BCTI performing with the least error . At an SNR of 1, BCTI technique had an average mean squared error of 2.34% whereas mean filtering technique had the highest error of 5.24%. As for the fault detection techniques, GLR had the lowest missed detection rate of 1.88% at a fixed false alarm rate of around 4%. At around the same false alarm rate, the Shewhart chart had the highest missed detection of 67.4%. Furthermore, these techniques were applied on real genomic copy number data sets. These included data from breast cancer cell lines (MPE600) and colorectal cancer cell lines (SW837)

    Genetic Tracking of the Raccoon Variant of Rabies Virus in Eastern North America

    Get PDF
    AbstractTo gain insight into the incursion of the raccoon variant of rabies into the raccoon population in three Canadian provinces, a collection of 192 isolates of the raccoon rabies virus (RRV) strain was acquired from across its North American range and was genetically characterized. A 516-nucleotide segment of the non-coding region between the G and L protein open reading frames, corresponding to the most variable region of the rabies virus genome, was sequenced. This analysis identified 119 different sequences, and phylogenetic analysis of the dataset supports the documented history of RRV spread. Three distinct geographically restricted RRV lineages were identified. Lineage 1 was found in Florida, Alabama and Georgia and appears to form the ancestral lineage of the raccoon variant of rabies. Lineage 2, represented by just two isolates, was found only in Florida, while the third lineage appears broadly distributed throughout the rest of the eastern United States and eastern Canada. In New York State, two distinct spatially segregated variants were identified; the one occupying the western and northern portions of the state was responsible for an incursion of raccoon rabies into the Canadian province of Ontario. Isolates from New Brunswick and Quebec form distinct, separate clusters, consistent with their independent origins from neighboring areas of the United States. The data are consistent with localized northward incursion into these three separate areas with no evidence of east–west viral movement between the three Canadian provinces

    Numerical solutions of random mean square Fisher-KPP models with advection

    Full text link
    [EN] This paper deals with the construction of numerical stable solutions of random mean square Fisher-Kolmogorov-Petrosky-Piskunov (Fisher-KPP) models with advection. The construction of the numerical scheme is performed in two stages. Firstly, a semidiscretization technique transforms the original continuous problem into a nonlinear inhomogeneous system of random differential equations. Then, by extending to the random framework, the ideas of the exponential time differencing method, a full vector discretization of the problem addresses to a random vector difference scheme. A sample approach of the random vector difference scheme, the use of properties of Metzler matrices and the logarithmic norm allow the proof of stability of the numerical solutions in the mean square sense. In spite of the computational complexity, the results are illustrated by comparing the results with a test problem where the exact solution is known.Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-PCasabán Bartual, MC.; Company Rossi, R.; Jódar Sánchez, LA. (2020). Numerical solutions of random mean square Fisher-KPP models with advection. Mathematical Methods in the Applied Sciences. 43(14):8015-8031. https://doi.org/10.1002/mma.5942S801580314314FISHER, R. A. (1937). THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES. Annals of Eugenics, 7(4), 355-369. doi:10.1111/j.1469-1809.1937.tb02153.xBengfort, M., Malchow, H., & Hilker, F. M. (2016). The Fokker–Planck law of diffusion and pattern formation in heterogeneous environments. Journal of Mathematical Biology, 73(3), 683-704. doi:10.1007/s00285-016-0966-8Okubo, A., & Levin, S. A. (2001). Diffusion and Ecological Problems: Modern Perspectives. Interdisciplinary Applied Mathematics. doi:10.1007/978-1-4757-4978-6SKELLAM, J. G. (1951). RANDOM DISPERSAL IN THEORETICAL POPULATIONS. Biometrika, 38(1-2), 196-218. doi:10.1093/biomet/38.1-2.196Aronson, D. G., & Weinberger, H. F. (1975). Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial Differential Equations and Related Topics, 5-49. doi:10.1007/bfb0070595Aronson, D. ., & Weinberger, H. . (1978). Multidimensional nonlinear diffusion arising in population genetics. Advances in Mathematics, 30(1), 33-76. doi:10.1016/0001-8708(78)90130-5Weinberger, H. F. (2002). On spreading speeds and traveling waves for growth and migration models in a periodic habitat. Journal of Mathematical Biology, 45(6), 511-548. doi:10.1007/s00285-002-0169-3Weinberger, H. F., Lewis, M. A., & Li, B. (2007). Anomalous spreading speeds of cooperative recursion systems. Journal of Mathematical Biology, 55(2), 207-222. doi:10.1007/s00285-007-0078-6Liang, X., & Zhao, X.-Q. (2006). Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Communications on Pure and Applied Mathematics, 60(1), 1-40. doi:10.1002/cpa.20154E. Fitzgibbon, W., Parrott, M. E., & Webb, G. (1995). Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems - A, 1(1), 35-57. doi:10.3934/dcds.1995.1.35Kinezaki, N., Kawasaki, K., & Shigesada, N. (2006). Spatial dynamics of invasion in sinusoidally varying environments. Population Ecology, 48(4), 263-270. doi:10.1007/s10144-006-0263-2Jin, Y., Hilker, F. M., Steffler, P. M., & Lewis, M. A. (2014). Seasonal Invasion Dynamics in a Spatially Heterogeneous River with Fluctuating Flows. Bulletin of Mathematical Biology, 76(7), 1522-1565. doi:10.1007/s11538-014-9957-3Faou, E. (2009). Analysis of splitting methods for reaction-diffusion problems using stochastic calculus. Mathematics of Computation, 78(267), 1467-1483. doi:10.1090/s0025-5718-08-02185-6Doering, C. R., Mueller, C., & Smereka, P. (2003). Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A: Statistical Mechanics and its Applications, 325(1-2), 243-259. doi:10.1016/s0378-4371(03)00203-6Siekmann, I., Bengfort, M., & Malchow, H. (2017). Coexistence of competitors mediated by nonlinear noise. The European Physical Journal Special Topics, 226(9), 2157-2170. doi:10.1140/epjst/e2017-70038-6McKean, H. P. (1975). Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov. Communications on Pure and Applied Mathematics, 28(3), 323-331. doi:10.1002/cpa.3160280302Berestycki, H., & Nadin, G. (2012). Spreading speeds for one-dimensional monostable reaction-diffusion equations. Journal of Mathematical Physics, 53(11), 115619. doi:10.1063/1.4764932Cortés, J. C., Jódar, L., Villafuerte, L., & Villanueva, R. J. (2007). Computing mean square approximations of random diffusion models with source term. Mathematics and Computers in Simulation, 76(1-3), 44-48. doi:10.1016/j.matcom.2007.01.020Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving linear and quadratic random matrix differential equations: A mean square approach. Applied Mathematical Modelling, 40(21-22), 9362-9377. doi:10.1016/j.apm.2016.06.017Sarmin, E. N., & Chudov, L. A. (1963). On the stability of the numerical integration of systems of ordinary differential equations arising in the use of the straight line method. USSR Computational Mathematics and Mathematical Physics, 3(6), 1537-1543. doi:10.1016/0041-5553(63)90256-8Sanz-Serna, J. M., & Verwer, J. G. (1989). Convergence analysis of one-step schemes in the method of lines. Applied Mathematics and Computation, 31, 183-196. doi:10.1016/0096-3003(89)90118-5Calvo, M. P., de Frutos, J., & Novo, J. (2001). Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Applied Numerical Mathematics, 37(4), 535-549. doi:10.1016/s0168-9274(00)00061-1Cox, S. M., & Matthews, P. C. (2002). Exponential Time Differencing for Stiff Systems. Journal of Computational Physics, 176(2), 430-455. doi:10.1006/jcph.2002.6995De la Hoz, F., & Vadillo, F. (2016). Numerical simulations of time-dependent partial differential equations. Journal of Computational and Applied Mathematics, 295, 175-184. doi:10.1016/j.cam.2014.10.006Company, R., Egorova, V. N., & Jódar, L. (2018). Conditional full stability of positivity-preserving finite difference scheme for diffusion–advection-reaction models. Journal of Computational and Applied Mathematics, 341, 157-168. doi:10.1016/j.cam.2018.02.031Kaczorek, T. (2002). Positive 1D and 2D Systems. Communications and Control Engineering. doi:10.1007/978-1-4471-0221-2Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4612-5561-

    Development and diagnostic validation of the Brisbane Evidence-Based Language Test

    Get PDF
    Purpose: To describe the development and determine the diagnostic accuracy of the Brisbane Evidence-Based Language Test in detecting aphasia. Methods: Consecutive acute stroke admissions (n = 100; mean = 66.49y) participated in a single (assessor) blinded cross-sectional study. Index assessment was the ∼45 min Brisbane Evidence-Based Language Test. The Brisbane Evidence-Based Language Test is further divided into four 15–25 min Short Tests: two Foundation Tests (severe impairment), Standard (moderate) and High Level Test (mild). Independent reference standard included the Language Screening Test, Aphasia Screening Test, Comprehensive Aphasia Test and/or Measure for Cognitive-Linguistic Abilities, treating team diagnosis and aphasia referral post-ward discharge. Results: Brisbane Evidence-Based Language Test cut-off score of ≤ 157 demonstrated 80.8% (LR+ =10.9) sensitivity and 92.6% (LR− =0.21) specificity. All Short Tests reported specificities of ≥ 92.6%. Foundation Tests I (cut-off ≤ 61) and II (cut-off ≤ 51) reported lower sensitivity (≥ 57.5%) given their focus on severe conditions. The Standard (cut-off ≤ 90) and High Level Test (cut-off ≤ 78) reported sensitivities of ≥ 72.6%. Conclusion: The Brisbane Evidence-Based Language Test is a sensitive assessment of aphasia. Diagnostically, the High Level Test recorded the highest psychometric capabilities of the Short Tests, equivalent to the full Brisbane Evidence-Based Language Test. The test is available for download from brisbanetest.org. Implications for rehabilitation: Aphasia is a debilitating condition and accurate identification of language disorders is important in healthcare. Language assessment is complex and the accuracy of assessment procedures is dependent upon a variety of factors. The Brisbane Evidence-Based Language Test is a new evidence-based language test specifically designed to adapt to varying patient need, clinical contexts and co-occurring conditions. In this cross-sectional validation study, the Brisbane Evidence-Based Language Test was found to be a sensitive measure for identifying aphasia in stroke
    corecore